Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
PLoS One ; 19(4): e0301773, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593167

RESUMO

Respiratory syncytial virus (RSV) is the leading viral cause of bronchiolitis and pneumonia in infants and toddlers, but there currently is no licensed pediatric vaccine. A leading vaccine candidate that has been evaluated for intranasal immunization in a recently completed phase 1/2 clinical trial is an attenuated version of RSV strain A2 called RSV/ΔNS2/Δ1313/I1314L (hereafter called ΔNS2). ΔNS2 is attenuated by deletion of the interferon antagonist NS2 gene and introduction into the L polymerase protein gene of a codon deletion (Δ1313) that confers temperature-sensitivity and is stabilized by a missense mutation (I1314L). Previously, introduction of four amino acid changes derived from a second RSV strain "line 19" (I79M, K191R, T357K, N371Y) into the F protein of strain A2 increased the stability of infectivity and the proportion of F protein in the highly immunogenic pre-fusion (pre-F) conformation. In the present study, these four "line 19" assignments were introduced into the ΔNS2 candidate, creating ΔNS2-L19F-4M. During in vitro growth in Vero cells, ΔNS2-L19F-4M had growth kinetics and peak titer similar to the ΔNS2 parent. ΔNS2-L19F-4M exhibited an enhanced proportion of pre-F protein, with a ratio of pre-F/total F that was 4.5- to 5.0-fold higher than that of the ΔNS2 parent. The stability of infectivity during incubation at 4°C, 25°C, 32°C and 37°C was greater for ΔNS2-L19F-4M; for example, after 28 days at 32°C, its titer was 100-fold greater than ΔNS2. ΔNS2-L19F-4M exhibited similar levels of replication in human airway epithelial (HAE) cells as ΔNS2. The four "line 19" F mutations were genetically stable during 10 rounds of serial passage in Vero cells. In African green monkeys, ΔNS2-L19F-4M and ΔNS2 had similar growth kinetics, peak titer, and immunogenicity. These results suggest that ΔNS2-L19F-4M is an improved live attenuated vaccine candidate whose enhanced stability may simplify its manufacture, storage and distribution, which merits further evaluation in a clinical trial in humans.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Animais , Humanos , Chlorocebus aethiops , Criança , Vacinas contra Vírus Sincicial Respiratório/genética , Células Vero , Anticorpos Antivirais , Proteínas Virais de Fusão/genética , Vírus Sincicial Respiratório Humano/genética , Anticorpos Neutralizantes , Mutação de Sentido Incorreto
2.
iScience ; 26(12): 108490, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38144450

RESUMO

Next-generation SARS-CoV-2 vaccines are needed that induce systemic and mucosal immunity. Murine pneumonia virus (MPV), a murine homolog of respiratory syncytial virus, is attenuated by host-range restriction in nonhuman primates and has a tropism for the respiratory tract. We generated MPV vectors expressing the wild-type SARS-CoV-2 spike protein (MPV/S) or its prefusion-stabilized form (MPV/S-2P). Both vectors replicated similarly in cell culture and stably expressed S. However, only S-2P was associated with MPV particles. After intranasal/intratracheal immunization of rhesus macaques, MPV/S and MPV/S-2P replicated to low levels in the airways. Despite its low-level replication, MPV/S-2P induced high levels of mucosal and serum IgG and IgA to SARS-CoV-2 S or its receptor-binding domain. Serum antibodies from MPV/S-2P-immunized animals efficiently inhibited ACE2 receptor binding to S proteins of variants of concern. Based on its attenuation and immunogenicity in macaques, MPV/S-2P will be further evaluated as a live-attenuated vaccine for intranasal immunization against SARS-CoV-2.

3.
Res Sq ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37790295

RESUMO

Immunization via the respiratory route is predicted to increase the effectiveness of a SARS-CoV-2 vaccine. We evaluated the immunogenicity and protective efficacy of one or two doses of a live-attenuated murine pneumonia virus vector expressing SARS-CoV-2 prefusion-stabilized spike protein (MPV/S-2P), delivered intranasally/intratracheally to rhesus macaques. A single dose of MPV/S-2P was highly immunogenic, and a second dose increased the magnitude and breadth of the mucosal and systemic anti-S antibody responses and increased levels of dimeric anti-S IgA in the airways. MPV/S-2P also induced S-specific CD4+ and CD8+ T-cells in the airways that differentiated into large populations of tissue-resident memory cells within a month after the boost. One dose induced substantial protection against SARS-CoV-2 challenge, and two doses of MPV/S-2P were fully protective against SARS-CoV-2 challenge virus replication in the airways. A prime/boost immunization with a mucosally-administered live-attenuated MPV vector could thus be highly effective in preventing SARS-CoV-2 infection and replication.

4.
J Infect Dis ; 228(Suppl 7): S635-S647, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37652048

RESUMO

BACKGROUND: Existing models of Ebola virus infection have not fully characterized the pathophysiology of shock in connection with daily virologic, clinical, and immunologic parameters. We implemented a nonhuman primate critical care model to investigate these associations. METHODS: Two rhesus macaques received a target dose of 1000 plaque-forming units of Ebola virus intramuscularly with supportive care initiated on day 3. High-dimensional spectral cytometry was used to phenotype neutrophils and peripheral blood mononuclear cells daily. RESULTS: We observed progressive vasodilatory shock with preserved cardiac function following viremia onset on day 5. Multiorgan dysfunction began on day 6 coincident with the nadir of circulating neutrophils. Consumptive coagulopathy and anemia occurred on days 7 to 8 along with irreversible shock, followed by death. The monocyte repertoire began shifting on day 4 with a decline in classical and expansion of double-negative monocytes. A selective loss of CXCR3-positive B and T cells, expansion of naive B cells, and activation of natural killer cells followed viremia onset. CONCLUSIONS: Our model allows for high-fidelity characterization of the pathophysiology of acute Ebola virus infection with host innate and adaptive immune responses, which may advance host-targeted therapy design and evaluation for use after the onset of multiorgan failure.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Animais , Humanos , Macaca mulatta , Leucócitos Mononucleares , Viremia , Cuidados Críticos
5.
mBio ; 14(2): e0022023, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36880755

RESUMO

Alternative delivery routes of the current Mycobacterium tuberculosis (Mtb) vaccine, intradermally (ID) delivered BCG, may provide better protection against tuberculosis, and be more easily administered. Here, we use rhesus macaques to compare the airway immunogenicity of BCG delivered via either ID or intragastric gavage vaccination. Ag-specific CD4 T cell responses in the blood were similar after BCG vaccination via gavage or ID injection. However, gavage BCG vaccination induced significantly lower T cell responses in the airways compared to intradermal BCG vaccination. Examining T cell responses in lymph node biopsies showed that ID vaccination induced T cell priming in skin-draining lymph nodes, while gavage vaccination induced priming in the gut-draining nodes, as expected. While both delivery routes induced highly functional Ag-specific CD4 T cells with a Th1* phenotype (CXCR3+CCR6+), gavage vaccination induced the co-expression of the gut-homing integrin α4ß7 on Ag-specific Th1* cells, which was associated with reduced migration into the airways. Thus, in rhesus macaques, the airway immunogenicity of gavage BCG vaccination may be limited by the imprinting of gut-homing receptors on Ag-specific T cells primed in intestinal lymph nodes. IMPORTANCE Mycobacterium tuberculosis (Mtb) is a leading cause of global infectious disease mortality. The vaccine for Mtb, Bacillus Calmette-Guérin (BCG), was originally developed as an oral vaccine, but is now given intradermally. Recently, clinical studies have reevaluated oral BCG vaccination in humans and found that it induces significant T cell responses in the airways. Here, we use rhesus macaques to compare the airway immunogenicity of BCG delivered intradermally or via intragastric gavage. We find that gavage BCG vaccination induces Mtb-specific T cell responses in the airways, but to a lesser extent than intradermal vaccination. Furthermore, gavage BCG vaccination induces the gut-homing receptor a4ß7 on Mtb-specific CD4 T cells, which was associated with reduced migration into the airways. These data raise the possibility that strategies to limit the induction of gut-homing receptors on responding T cells may enhance the airway immunogenicity of oral vaccines.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose , Animais , Humanos , Vacina BCG , Macaca mulatta , Pulmão/microbiologia , Tuberculose/prevenção & controle , Células Th1 , Mycobacterium bovis/genética , Linfócitos T CD4-Positivos , Vacinação
6.
Microbiol Spectr ; 11(1): e0213922, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36475838

RESUMO

The bacterial component of the gastrointestinal tract microbiome is comprised of hundreds of species, the majority of which live in symbiosis with the host. The bacterial microbiome is influenced by host diet and disease history, and host genetics may additionally play a role. To understand the degree to which host genetics shapes the gastrointestinal tract microbiome, we studied fecal microbiomes in 4 species of nonhuman primates (NHPs) held in separate facilities but fed the same base diet. These animals include Chlorocebus pygerythrus, Chlorocebus sabaeus, Macaca mulatta, and Macaca nemestrina. We also followed gastrointestinal tract microbiome composition in 20 Macaca mulatta (rhesus macaques [RMs]) as they transitioned from an outdoor to indoor environment and compared 6 Chlorocebus pygerythrus monkeys that made the outdoor to indoor transition to their 9 captive-born offspring. We found that genetics can influence microbiome composition, with animals of different genera (Chlorocebus versus Macaca) having significantly different gastrointestinal (GI) microbiomes despite controlled diets. Animals within the same genera have more similar microbiomes, although still significantly different, and animals within the same species have even more similar compositions that are not significantly different. Significant differences were also not observed between wild-born and captive-born Chlorocebus pygerythrus, while there were significant changes in RMs as they transitioned into captivity. Together, these results suggest that the effects of captivity have a larger impact on the microbiome than other factors we examined within a single NHP species, although host genetics does significantly influence microbiome composition between NHP genera and species. IMPORTANCE Our data point to the degree to which host genetics can influence GI microbiome composition and suggest, within primate species, that individual host genetics is unlikely to significantly alter the microbiome. These data are important for the development of therapeutics aimed at altering the microbiome within populations of genetically disparate members of primate species.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Chlorocebus aethiops , Microbioma Gastrointestinal/genética , Macaca mulatta , Filogenia , Microbiota/genética , Dieta , RNA Ribossômico 16S/genética
7.
Cell ; 185(25): 4811-4825.e17, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36423629

RESUMO

Pediatric SARS-CoV-2 vaccines are needed that elicit immunity directly in the airways as well as systemically. Building on pediatric parainfluenza virus vaccines in clinical development, we generated a live-attenuated parainfluenza-virus-vectored vaccine candidate expressing SARS-CoV-2 prefusion-stabilized spike (S) protein (B/HPIV3/S-6P) and evaluated its immunogenicity and protective efficacy in rhesus macaques. A single intranasal/intratracheal dose of B/HPIV3/S-6P induced strong S-specific airway mucosal immunoglobulin A (IgA) and IgG responses. High levels of S-specific antibodies were also induced in serum, which efficiently neutralized SARS-CoV-2 variants of concern of alpha, beta, and delta lineages, while their ability to neutralize Omicron sub-lineages was lower. Furthermore, B/HPIV3/S-6P induced robust systemic and pulmonary S-specific CD4+ and CD8+ T cell responses, including tissue-resident memory cells in the lungs. Following challenge, SARS-CoV-2 replication was undetectable in airways and lung tissues of immunized macaques. B/HPIV3/S-6P will be evaluated clinically as pediatric intranasal SARS-CoV-2/parainfluenza virus type 3 vaccine.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Macaca mulatta , COVID-19/prevenção & controle , SARS-CoV-2/genética
8.
bioRxiv ; 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35665011

RESUMO

Pediatric SARS-CoV-2 vaccines are needed that elicit immunity directly in the airways, as well as systemically. Building on pediatric parainfluenza virus vaccines in clinical development, we generated a live-attenuated parainfluenza virus-vectored vaccine candidate expressing SARS-CoV-2 prefusion-stabilized spike (S) protein (B/HPIV3/S-6P) and evaluated its immunogenicity and protective efficacy in rhesus macaques. A single intranasal/intratracheal dose of B/HPIV3/S-6P induced strong S-specific airway mucosal IgA and IgG responses. High levels of S-specific antibodies were also induced in serum, which efficiently neutralized SARS-CoV-2 variants of concern. Furthermore, B/HPIV3/S-6P induced robust systemic and pulmonary S-specific CD4+ and CD8+ T-cell responses, including tissue-resident memory cells in lungs. Following challenge, SARS-CoV-2 replication was undetectable in airways and lung tissues of immunized macaques. B/HPIV3/S-6P will be evaluated clinically as pediatric intranasal SARS-CoV-2/parainfluenza virus type 3 vaccine.

9.
Nat Med ; 27(12): 2234-2245, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34887575

RESUMO

The development of a protective vaccine remains a top priority for the control of the HIV/AIDS pandemic. Here, we show that a messenger RNA (mRNA) vaccine co-expressing membrane-anchored HIV-1 envelope (Env) and simian immunodeficiency virus (SIV) Gag proteins to generate virus-like particles (VLPs) induces antibodies capable of broad neutralization and reduces the risk of infection in rhesus macaques. In mice, immunization with co-formulated env and gag mRNAs was superior to env mRNA alone in inducing neutralizing antibodies. Macaques were primed with a transmitted-founder clade-B env mRNA lacking the N276 glycan, followed by multiple booster immunizations with glycan-repaired autologous and subsequently bivalent heterologous envs (clades A and C). This regimen was highly immunogenic and elicited neutralizing antibodies against the most prevalent (tier-2) HIV-1 strains accompanied by robust anti-Env CD4+ T cell responses. Vaccinated animals had a 79% per-exposure risk reduction upon repeated low-dose mucosal challenges with heterologous tier-2 simian-human immunodeficiency virus (SHIV AD8). Thus, the multiclade env-gag VLP mRNA platform represents a promising approach for the development of an HIV-1 vaccine.


Assuntos
Anticorpos Neutralizantes/imunologia , Genes env , Genes gag , Anticorpos Anti-HIV/biossíntese , HIV-1/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vacinas Sintéticas/imunologia , Vacinas de mRNA/imunologia , Animais , Anticorpos Anti-HIV/imunologia , Imunização Secundária , Macaca mulatta , Fatores de Risco , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas de mRNA/administração & dosagem
10.
J Virol ; 95(2)2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33115876

RESUMO

Live-attenuated pediatric vaccines for intranasal administration are being developed for human respiratory syncytial virus (RSV), an important worldwide pediatric respiratory pathogen that lacks a licensed vaccine or suitable antiviral drug. We evaluated a prime-boost strategy in which primary immunization with RSV was boosted by secondary immunization with RSV or with a chimeric recombinant bovine/human parainfluenza virus type 3 (rB/HPIV3) vector expressing the RSV fusion F protein. The vector-expressed F protein had been engineered (DS-Cav1 mutations) for increased stability in the highly immunogenic prefusion (pre-F) conformation, with or without replacement of its transmembrane and cytoplasmic tail domains with their counterparts from bovine parainfluenza virus type 3 (BPIV3) F protein to direct incorporation into the vector virion for increased immunogenicity. In hamsters that received a primary infection with RSV, a booster infection with RSV ∼6 weeks later was completely restricted for producing infectious virus but induced a significant increase in the serum RSV-plaque-reduction neutralizing antibody titer (RSV-PRNT). Boosting instead with the rB/HPIV3-RSV-pre-F vectors resulted in efficient replication and induced significantly higher RSV-PRNTs than RSV. In African green monkeys that received a primary infection with RSV, a booster infection with RSV ∼2, ∼6, or ∼15 months later was highly restricted, whereas booster infections with the vectors had robust replication. Compared with RSV, boosts with the vectors induced 7- to 15-fold higher titers of RSV-specific serum antibodies with high neutralizing activity, as well as significantly higher titers of RSV-specific mucosal IgA antibodies. These findings support further development of this heterologous prime-boost strategy.IMPORTANCE Immune responses to RSV in infants can be reduced due to immunological immaturity and immunosuppression by RSV-specific maternal antibodies. In infants and young children, two infections with wild-type RSV typically are needed to achieve the titers of RSV-specific serum antibodies and protection against illness that are observed in adults. Therefore, a boost might substantially improve the performance of live pediatric RSV vaccines presently being developed. Hamsters and African green monkeys received a primary intranasal infection with RSV and were given a boost with RSV or a parainfluenza virus (PIV) vector expressing RSV fusion protein engineered for enhanced immunogenicity. The RSV boost was highly restricted but induced a significant increase in serum RSV-neutralizing antibodies. The PIV vectors replicated efficiently and induced significantly higher antibody responses. The use of an attenuated PIV vector expressing RSV antigen to boost a primary immunization with an attenuated RSV warrants further evaluation.


Assuntos
Imunização Secundária/métodos , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Respirovirus/genética , Proteínas Virais de Fusão/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Chlorocebus aethiops , Cricetinae , Imunogenicidade da Vacina , Mutação , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vacinas contra Vírus Sincicial Respiratório/genética , Vírus Sincicial Respiratório Humano/genética , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas Virais de Fusão/genética
11.
Sci Transl Med ; 12(567)2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33115950

RESUMO

There is limited information about the impact of Zika virus (ZIKV) exposure in utero on the anti-ZIKV immune responses of offspring. We infected six rhesus macaque dams with ZIKV early or late in pregnancy and studied four of their offspring over the course of a year postpartum. Despite evidence of ZIKV exposure in utero, we observed no structural brain abnormalities in the offspring. We detected infant-derived ZIKV-specific immunoglobulin A antibody responses and T cell memory responses during the first year postpartum in the two offspring born to dams infected with ZIKV early in pregnancy. Critically, although the infants had acquired some immunological memory of ZIKV, it was not sufficient to protect them against reinfection with ZIKV at 1 year postpartum. The four offspring reexposed to ZIKV at 1 year postpartum all survived but exhibited acute viremia and viral tropism to lymphoid tissues; three of four reexposed offspring exhibited spinal cord pathology. These data suggest that macaque infants born to dams infected with ZIKV during pregnancy remain susceptible to postnatal infection and consequent neuropathology.


Assuntos
Complicações Infecciosas na Gravidez , Infecção por Zika virus , Zika virus , Animais , Feminino , Humanos , Macaca mulatta , Período Pós-Parto , Gravidez , Reinfecção
12.
J Alzheimers Dis ; 68(1): 115-126, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30689563

RESUMO

The degeneration in the locus coeruleus associated with Alzheimer's disease suggests an involvement of the noradrenergic system in the disease pathogenesis. The role of depleted norepinephrine was tested in adult and aged rhesus macaques to develop a potential model for testing Alzheimer's disease interventions. Monkeys were injected with the noradrenergic neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) or vehicle at 0, 3, and 6 months; brains were harvested at 9 months. Reduced norepinephrine in the locus coeruleus was accompanied by decreased dopamine ß-hydroxylase staining and increased amyloid-ß load in the aged group, and the proportion of potentially toxic amyloid-ß42 peptide was increased. Immunohistochemistry revealed no effects on microglia or astrocytes. DSP4 treatment altered amyloid processing, but these changes were not associated with the induction of chronic neuroinflammation. These findings suggest norepinephrine deregulation is an essential component of a nonhuman primate model of Alzheimer's disease, but further refinement is necessary.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Benzilaminas/farmacologia , Locus Cerúleo/metabolismo , Inibidores da Captação de Neurotransmissores/farmacologia , Norepinefrina/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Precursor de Proteína beta-Amiloide/antagonistas & inibidores , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Feminino , Locus Cerúleo/efeitos dos fármacos , Macaca mulatta , Norepinefrina/antagonistas & inibidores , Fragmentos de Peptídeos/antagonistas & inibidores , Distribuição Aleatória
13.
J Virol ; 92(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29925656

RESUMO

Human respiratory syncytial virus (RSV) continues to be the leading viral cause of severe acute lower respiratory tract disease in infants and children worldwide. A licensed vaccine or antiviral drug suitable for routine use remains unavailable. Like RSV, Murine pneumonia virus (MPV) is a member of the genus Orthopneumovirus, family Pneumoviridae Humans are not normally exposed to MPV, and MPV is not cross-protective with RSV. We evaluated MPV as an RSV vaccine vector expressing the RSV fusion (F) glycoprotein. The RSV F open reading frame (ORF) was codon optimized, and the encoded RSV F protein was made identical to an early passage of RSV strain A2. The RSV F ORF was placed under the control of MPV transcription signals and inserted at the first (rMPV-F1), third (rMPV-F3), or fourth (rMPV-F4) gene position of a version of the MPV genome that contained a codon-pair-optimized polymerase (L) gene. The recovered viruses replicated in vitro as efficiently as the empty vector, with stable expression of RSV F protein. Replication and immunogenicity of rMPV-F1 and rMPV-F3 were evaluated in rhesus macaques following intranasal and intratracheal administration. Both viruses replicated at low levels in the upper and lower respiratory tracts, maintained stable RSV F expression, and induced RSV-neutralizing serum antibodies at high levels similar to those induced by wild-type RSV replicating to a 5- to 25-fold-higher titer. In conclusion, this study demonstrated that rMPV provides a highly attenuated yet immunogenic vector for the expression of RSV F protein, with potential application in RSV-naive and RSV-experienced populations.IMPORTANCE Human respiratory syncytial virus (RSV) is an important human pathogen that lacks a licensed vaccine or antiviral drug suitable for routine use. We describe here the evaluation of recombinant murine pneumonia virus (rMPV) as a live-attenuated vector that expresses the RSV F protein, the major RSV neutralization antigen, as an experimental RSV vaccine. The rMPV-RSV-F vectors expressing RSV F from the first, third, or fourth gene position were genetically stable and were not restricted for replication in vitro In contrast, the vectors exhibited highly attenuated replication in the respiratory tract of rhesus macaques, maintained stable RSV F expression, and induced RSV-neutralizing serum antibodies at high titers similar to those conferred by wild-type RSV. Given the lack of preexisting immunity to MPV in humans and the lack of cross-neutralization and cross-protection between MPV and RSV, an rMPV-vectored RSV vaccine should be immunogenic in both RSV-naive children and RSV-experienced adults.


Assuntos
Vírus da Pneumonia Murina/genética , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/genética , Proteínas Virais de Fusão/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Chlorocebus aethiops , Vetores Genéticos , Humanos , Macaca mulatta , Camundongos , Vírus da Pneumonia Murina/imunologia , Vírus da Pneumonia Murina/metabolismo , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vacinas contra Vírus Sincicial Respiratório/genética , Vírus Sincicial Respiratório Humano/imunologia , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Células Vero , Proteínas Virais de Fusão/genética , Replicação Viral
14.
Comp Med ; 67(5): 456-460, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28935009

RESUMO

A wild-caught, research-naïve, adult male mustached tamarin (Saguinus mystax) experienced sudden onset of bilateral hindlimb paresis. Physical examination established the presence of paralysis and the lack of femoral pulses and deep pain in both legs. There were no signs of external trauma and, due to a poor prognosis, euthanasia was elected. Necropsy findings included pleural effusion, partial pulmonary atelectasis and congestion, dilatatory cardiomyopathy, a renal hemorrhagic infarct, and a thromboembolus located at the trifurcation of the distal abdominal aorta. The clinical and histologic findings were indicative of an aortic-iliac thrombosis.


Assuntos
Aorta Abdominal/patologia , Aneurisma Aórtico/veterinária , Cardiomiopatias/veterinária , Doenças dos Macacos/patologia , Paraplegia/veterinária , Saguinus , Animais , Aneurisma Aórtico/patologia , Cardiomiopatias/patologia , Extremidade Inferior , Masculino , Paraplegia/etiologia , Derrame Pleural
15.
J Virol ; 91(15)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28539444

RESUMO

Respiratory syncytial virus (RSV) is the most important viral agent of severe pediatric respiratory tract disease worldwide, but it lacks a licensed vaccine or suitable antiviral drug. A live attenuated chimeric bovine/human parainfluenza virus type 3 (rB/HPIV3) was developed previously as a vector expressing RSV fusion (F) protein to confer bivalent protection against RSV and HPIV3. In a previous clinical trial in virus-naive children, rB/HPIV3 was well tolerated but the immunogenicity of wild-type RSV F was unsatisfactory. We previously modified RSV F with a designed disulfide bond (DS) to increase stability in the prefusion (pre-F) conformation and to be efficiently packaged in the vector virion. Here, we further stabilized pre-F by adding both disulfide and cavity-filling mutations (DS-Cav1), and we also modified RSV F codon usage to have a lower CpG content and a higher level of expression. This RSV F open reading frame was evaluated in rB/HPIV3 in three forms: (i) pre-F without vector-packaging signal, (ii) pre-F with vector-packaging signal, and (iii) secreted pre-F ectodomain trimer. Despite being efficiently expressed, the secreted pre-F was poorly immunogenic. DS-Cav1 stabilized pre-F, with or without packaging, induced higher titers of pre-F specific antibodies in hamsters, and improved the quality of RSV-neutralizing serum antibodies. Codon-optimized RSV F containing fewer CpG dinucleotides had higher F expression, replicated more efficiently in vivo, and was more immunogenic. The combination of DS-Cav1 pre-F stabilization, optimized codon usage, reduced CpG content, and vector packaging significantly improved vector immunogenicity and protective efficacy against RSV. This provides an improved vectored RSV vaccine candidate suitable for pediatric clinical evaluation.IMPORTANCE RSV and HPIV3 are the first and second leading viral causes of severe pediatric respiratory disease worldwide. Licensed vaccines or suitable antiviral drugs are not available. We are developing a chimeric rB/HPIV3 vector expressing RSV F as a bivalent RSV/HPIV3 vaccine and have been evaluating means to increase RSV F immunogenicity. In this study, we evaluated the effects of improved stabilization of F in the pre-F conformation and of codon optimization resulting in reduced CpG content and greater pre-F expression. Reduced CpG content dampened the interferon response to infection, promoting higher replication and increased F expression. We demonstrate that improved pre-F stabilization and strategic manipulation of codon usage, together with efficient pre-F packaging into vector virions, significantly increased F immunogenicity in the bivalent RSV/HPIV3 vaccine. The improved immunogenicity included induction of increased titers of high-quality complement-independent antibodies with greater pre-F site Ø binding and greater protection against RSV challenge.


Assuntos
Portadores de Fármacos , Vacinas contra Vírus Sincicial Respiratório/imunologia , Respirovirus/fisiologia , Proteínas Virais de Fusão/imunologia , Vírion/metabolismo , Montagem de Vírus , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Códon , Cricetinae , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/imunologia , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vacinas contra Vírus Sincicial Respiratório/genética , Respirovirus/genética , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Vírion/genética
16.
J Virol ; 91(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28250127

RESUMO

The recent 2014-2016 Ebola virus (EBOV) outbreak prompted increased efforts to develop vaccines against EBOV disease. We describe the development and preclinical evaluation of an attenuated recombinant human parainfluenza virus type 1 (rHPIV1) expressing the membrane-anchored form of EBOV glycoprotein GP, as an intranasal (i.n.) EBOV vaccine. GP was codon optimized and expressed either as a full-length protein or as an engineered chimeric form in which its transmembrane and cytoplasmic tail (TMCT) domains were replaced with those of the HPIV1 F protein in an effort to enhance packaging into the vector particle and immunogenicity. GP was inserted either preceding the N gene (pre-N) or between the N and P genes (N-P) of rHPIV1 bearing a stabilized attenuating mutation in the P/C gene (CΔ170). The constructs grew to high titers and efficiently and stably expressed GP. Viruses were attenuated, replicating at low titers over several days, in the respiratory tract of African green monkeys (AGMs). Two doses of candidates expressing GP from the pre-N position elicited higher GP neutralizing serum antibody titers than the N-P viruses, and unmodified GP induced higher levels than its TMCT counterpart. Unmodified EBOV GP was packaged into the HPIV1 particle, and the TMCT modification did not increase packaging or immunogenicity but rather reduced the stability of GP expression during in vivo replication. In conclusion, we identified an attenuated and immunogenic i.n. vaccine candidate expressing GP from the pre-N position. It is expected to be well tolerated in humans and is available for clinical evaluation.IMPORTANCE EBOV hemorrhagic fever is one of the most lethal viral infections and lacks a licensed vaccine. Contact of fluids from infected individuals, including droplets or aerosols, with mucosal surfaces is an important route of EBOV spread during a natural outbreak, and aerosols also might be exploited for intentional virus spread. Therefore, vaccines that protect against mucosal as well as systemic inoculation are needed. We evaluated a version of human parainfluenza virus type 1 (HPIV1) bearing a stabilized attenuating mutation in the P/C gene (CΔ170) as an intranasal vaccine vector to express the EBOV glycoprotein GP. We evaluated expression from two different genome positions (pre-N and N-P) and investigated the use of vector packaging signals. African green monkeys immunized with two doses of the vector expressing GP from the pre-N position developed high titers of GP neutralizing serum antibodies. The attenuated vaccine candidate is expected to be safe and immunogenic and is available for clinical development.


Assuntos
Vacinas contra Ebola/genética , Vacinas contra Ebola/imunologia , Ebolavirus/química , Doença pelo Vírus Ebola/prevenção & controle , Vírus da Parainfluenza 1 Humana/genética , Proteínas do Envelope Viral/genética , Administração Intranasal , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Chlorocebus aethiops , Vacinas contra Ebola/administração & dosagem , Ebolavirus/genética , Ebolavirus/imunologia , Vetores Genéticos , Glicoproteínas/genética , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/imunologia , Humanos , Sistema Respiratório/virologia , Vacinação , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/química , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Replicação Viral
17.
J Virol ; 90(21): 10022-10038, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27581977

RESUMO

Human respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are major pediatric respiratory pathogens that lack vaccines. A chimeric bovine/human PIV3 (rB/HPIV3) virus expressing the unmodified, wild-type (wt) RSV fusion (F) protein from an added gene was previously evaluated in seronegative children as a bivalent intranasal RSV/HPIV3 vaccine, and it was well tolerated but insufficiently immunogenic for RSV F. We recently showed that rB/HPIV3 expressing a partially stabilized prefusion form (pre-F) of RSV F efficiently induced "high-quality" RSV-neutralizing antibodies, defined as antibodies that neutralize RSV in vitro without added complement (B. Liang et al., J Virol 89:9499-9510, 2015, doi:10.1128/JVI.01373-15). In the present study, we modified RSV F by replacing its cytoplasmic tail (CT) domain or its CT and transmembrane (TM) domains (TMCT) with counterparts from BPIV3 F, with or without pre-F stabilization. This resulted in RSV F being packaged in the rB/HPIV3 particle with an efficiency similar to that of RSV particles. Enhanced packaging was substantially attenuating in hamsters (10- to 100-fold) and rhesus monkeys (100- to 1,000-fold). Nonetheless, TMCT-directed packaging substantially increased the titers of high-quality RSV-neutralizing serum antibodies in hamsters. In rhesus monkeys, a strongly additive immunogenic effect of packaging and pre-F stabilization was observed, as demonstrated by 8- and 30-fold increases of RSV-neutralizing serum antibody titers in the presence and absence of added complement, respectively, compared to pre-F stabilization alone. Analysis of vaccine-induced F-specific antibodies by binding assays indicated that packaging conferred substantial stabilization of RSV F in the pre-F conformation. This provides an improved version of this well-tolerated RSV/HPIV3 vaccine candidate, with potently improved immunogenicity, which can be returned to clinical trials. IMPORTANCE: Human respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are major viral agents of acute pediatric bronchiolitis and pneumonia worldwide that lack vaccines. A bivalent intranasal RSV/HPIV3 vaccine candidate consisting of a chimeric bovine/human PIV3 (rB/HPIV3) strain expressing the RSV fusion (F) protein was previously shown to be well tolerated by seronegative children but was insufficiently immunogenic for RSV F. In the present study, the RSV F protein was engineered to be packaged efficiently into vaccine virus particles. This resulted in a significantly enhanced quantity and quality of RSV-neutralizing antibodies in hamsters and nonhuman primates. In nonhuman primates, this effect was strongly additive to the previously described stabilization of the prefusion conformation of the F protein. The improved immunogenicity of RSV F by packaging appeared to involve prefusion stabilization. These findings provide a potently more immunogenic version of this well-tolerated vaccine candidate and should be applicable to other vectored vaccines.


Assuntos
Anticorpos Neutralizantes/genética , Vetores Genéticos/genética , Vírus da Parainfluenza 3 Bovina/genética , Vírus da Parainfluenza 3 Humana/genética , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/imunologia , Proteínas Virais de Fusão/genética , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Capsídeo/metabolismo , Bovinos , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Humanos , Macaca mulatta , Vírus da Parainfluenza 3 Bovina/imunologia , Vírus da Parainfluenza 3 Humana/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vacinas contra Vírus Sincicial Respiratório/genética , Vacinas contra Vírus Sincicial Respiratório/imunologia , Infecções por Respirovirus/imunologia , Infecções por Respirovirus/virologia , Células Vero , Proteínas Virais de Fusão/imunologia , Replicação Viral/genética
18.
Cell Metab ; 20(1): 183-90, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24882067

RESUMO

Central arterial wall stiffening, driven by a chronic inflammatory milieu, accompanies arterial diseases, the leading cause of cardiovascular (CV) morbidity and mortality in Western society. An increase in central arterial wall stiffening, measured as an increase in aortic pulse wave velocity (PWV), is a major risk factor for clinical CV disease events. However, no specific therapies to reduce PWV are presently available. In rhesus monkeys, a 2 year diet high in fat and sucrose (HFS) increases not only body weight and cholesterol, but also induces prominent central arterial wall stiffening and increases PWV and inflammation. The observed loss of endothelial cell integrity, lipid and macrophage infiltration, and calcification of the arterial wall were driven by genomic and proteomic signatures of oxidative stress and inflammation. Resveratrol prevented the HFS-induced arterial wall inflammation and the accompanying increase in PWV. Dietary resveratrol may hold promise as a therapy to ameliorate increases in PWV.


Assuntos
Aorta/efeitos dos fármacos , Dieta Hiperlipídica , Estilbenos/farmacologia , Sacarose/farmacologia , Aldeídos/metabolismo , Animais , Aorta/enzimologia , Aorta/metabolismo , Caspase 3/metabolismo , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Inflamação , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Primatas , Análise de Onda de Pulso , Resveratrol , Transcrição Gênica/efeitos dos fármacos
19.
Vaccine ; 32(26): 3187-97, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24736001

RESUMO

The upsurge of West Nile virus (WNV) human infections in 2012 suggests that the US can expect periodic WNV outbreaks in the future. Availability of safe and effective vaccines against WNV in endemic areas, particularly for aging populations that are at high risk of West Nile neuroinvasive disease (WNND), could be beneficial. WN/DEN4Δ30 is a live, attenuated chimeric vaccine against WNV produced by replacement of the genes encoding the pre-membrane and envelope protein genes of the vaccine virus against dengue virus type 4 (DEN4Δ30) with corresponding sequences derived from a wild type WNV. Following intrathalamic inoculation of nonhuman primates (NHPs), a comprehensive neuropathogenesis study was performed and neurovirulence of WN/DEN4Δ30 vaccine candidate was compared to that of two parental viruses (i.e., WNV and DEN4Δ30), as well as to that of an attenuated flavivirus surrogate reference (i.e., yellow fever YF 17D). Clinical and virological data, as well as results of a semi-quantitative histopathological analysis, demonstrated that WN/DEN4Δ30 vaccine is highly attenuated for the central nervous system (CNS) of NHPs in comparison to a wild type WNV. Importantly, based on the virus replicative ability in the CNS of NHPs and the degree of induced histopathological changes, the level of neuroattenuation of WN/DEN4Δ30 vaccine was similar to that of YF 17D, and therefore within an acceptable range. In addition, we show that the DEN4Δ30 vaccine tested in this study also has a low neurovirulence profile. In summary, our results demonstrate a high level of neuroattenuation of two vaccine candidates, WN/DEN4Δ30 and DEN4Δ30. We also show here a remarkable sensitivity of our WNV-NY99 NHP model, as well as striking resemblance of the observed neuropathology to that seen in human WNND. These results support the use of this NHP model for translational studies of WNV neuropathogenesis and/or testing the effectiveness of vaccines and therapeutic approaches.


Assuntos
Sistema Nervoso Central/virologia , Vacinas Virais/imunologia , Febre do Nilo Ocidental/patologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Sistema Nervoso Central/patologia , Macaca mulatta , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/imunologia , Viremia/patologia , Replicação Viral , Febre do Nilo Ocidental/prevenção & controle , Vírus do Nilo Ocidental/patogenicidade , Vírus do Nilo Ocidental/fisiologia
20.
J Med Primatol ; 43(3): 162-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24697511

RESUMO

BACKGROUND: Drugs commonly used to sedate non-human primates for physiological sample collection can affect the metabolic system and alter rates of glucose metabolism. This study was designed to compare the physiological and metabolic effects of ketamine/diazepam, telazol, and ketamine/dexmedetomidine. METHODS: Seven female rhesus monkeys underwent intravenous glucose tolerance testing under each of three anesthesia conditions. Blood glucose, insulin, physiological parameters, and sedation characteristics were measured and recorded. RESULTS: Glucose and insulin values were both significantly impacted by ketamine/dexmedetomidine sedation while remaining consistent during ketamine and telazol sedation. Heart rate was also significantly lowered during ketamine/dexmedetomidine anesthesia. Though, ketamine/dexmedetomidine resulted in a longer time between induction of anesthesia and need for a supplemental dose of anesthesia drug. CONCLUSIONS: Telazol and ketamine have minimal cardiorespiratory and metabolic effects compared to ketamine/dexmedetomidine. Although practicably interchangeable, telazol appears to be the most efficient for intravenous glucose tolerance testings with non-human primates.


Assuntos
Anestesia/métodos , Anestésicos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Macaca mulatta/metabolismo , Taxa Respiratória/efeitos dos fármacos , Animais , Dexmedetomidina/farmacologia , Diazepam/farmacologia , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Feminino , Teste de Tolerância a Glucose , Ketamina/farmacologia , Tiletamina/farmacologia , Zolazepam/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...